The hamster circadian rhythm system includes nuclei of the subcortical visual shell.

نویسندگان

  • E G Marchant
  • L P Morin
چکیده

The clock regulating mammalian circadian rhythmicity resides in the suprachiasmatic nucleus. The intergeniculate leaflet, a major component of the subcortical visual system, has been shown to be essential for certain aspects of circadian rhythm regulation. We now report that midbrain visual nuclei afferent to the intergeniculate leaflet are also components of the hamster circadian rhythm system. Loss of connections between the intergeniculate leaflet and visual midbrain or neurotoxic lesions of pretectum or deep superior colliculus (but not of the superficial superior colliculus) blocked phase shifts of the circadian activity rhythm in response to a benzodiazepine injection during the subjective day. Such damage did not disturb phase response to a novel wheel stimulus. The amount of wheel running or open field locomotion were equivalent in lesioned and control groups after benzodiazepine treatment. Electrical stimulation of the deep superior colliculus, without its own effect on circadian rhythm phase, greatly attenuated light-induced phase shifts. Such stimulation was associated with increased FOS protein immunoreactivity in the suprachiasmatic nucleus. The results show that the circadian rhythm system includes the visual midbrain and distinguishes between mechanisms necessary for phase response to benzodiazepine and those for phase response to locomotion in a novel wheel. The results also refute the idea that benzodiazepine-induced phase shifts are the consequence of induced locomotion. Finally, the data provide the first indication that the visual midbrain can modulate circadian rhythm response to light. A variety of environmental stimuli may gain access to the circadian clock mechanism through subcortical nuclei projecting to the intergeniculate leaflet and, via the final common path of the geniculohypothalamic tract, from the leaflet to the suprachiasmatic nucleus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcortical Visual Shell Nuclei Targeted by ipRGCs Develop from a Sox14+-GABAergic Progenitor and Require Sox14 to Regulate Daily Activity Rhythms

Intrinsically photosensitive retinal ganglion cells (ipRGCs) and their nuclear targets in the subcortical visual shell (SVS) are components of the non-image-forming visual system, which regulates important physiological processes, including photoentrainment of the circadian rhythm. While ipRGCs have been the subject of much recent research, less is known about their central targets and how they...

متن کامل

Forebrain connections of the hamster intergeniculate leaflet: comparison with those of ventral lateral geniculate nucleus and retina.

The hamster intergeniculate leaflet (IGL), part of the circadian rhythm regulatory system, has very extensive interconnections with subcortical visual nuclei. The present investigation describes IGL connections with the hamster diencephalon and telencephalon and compares them with ventral lateral geniculate nucleus (VLG) connections and retinal projections. Connections of the geniculate nuclei ...

متن کامل

Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain.

The intergeniculate leaflet (IGL) of the lateral geniculate complex has widespread, bilateral, and reciprocal connections with nuclei in the subcortical visual shell. Its function is poorly understood with respect to its role in visual processing. The most well-known IGL projection, and the only one with a clear function, is the geniculohypothalamic tract (GHT) that terminates in the suprachias...

متن کامل

Circadian organization of the estrous cycle of the golden hamster.

In constant dim illumination the hamster estrous cycle free-runs with a period that is a quadruple multiple of the concurrently recorded rhythm of wheel-running activity; both activity and estrous cycles are generated by biological clocks. Maintenance of stable phase angle differences between heat onset and running onset before and after treatment with deuterium oxide suggests that a common cir...

متن کامل

Gastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro.

The main mammalian circadian pacemaker is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Gastrin-releasing peptide (GRP) and its receptor (BB(2)) are synthesized by rodent SCN neurons, but the role of GRP in circadian rhythm processes is unknown. In this study, we examined the phase-resetting actions of GRP on the electrical activity rhythms of hamster and rat SCN neurons in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 23  شماره 

صفحات  -

تاریخ انتشار 1999